
1

 Learning Lab 5: Parallel Algorithms of Graph Processing
Learning Lab 5: Parallel Algorithms of Graph Processing... 1

Lab Objective ... 1
Exercise 1 – State the Shortest Path Problem ... 2
Exercise 2 – Code the Serial Floyd Program.. 3

Task 1 – Open the project SerialFloyd ... 3
Task 2 – Input the Number of Vertices.. 4
Task 3 –Terminatee the Program Execution... 7
Task 4 – Implement the Floyd Algorithm... 7
Task 5 – Carry out the Computational Experiments... 8

Exercise 3 –Develop the Parallel Floyd Algorithm .. 11
Subtask Definition .. 11
Choosing the Information Dependencies.. 11
Scaling and Distributing the Subtasks among Processors .. 11

Exercise 4 – Code the Parallel Floyd Program ... 11
Task 1 – Open the Project ParallelFloyd .. 12
Task 2 –Initialize and Terminate the Parallel Program... 12
Task 3 – Input the Initial Data .. 14
Task 4 –Terminate the Calculations ... 15
Task 5 – Distribute the Data among the Processes ... 16
Task 6 – Implement the Parallel Floyd Algorithm ... 17
Task 7 – Implement the Floyd Algorithm Iterations... 19
Task 8 – Collect the Result Matrix ... 20
Task 9 – Test the Parallel Program Correctness ... 20
Task 10 – Implement the Floyd Algorithm for Any Given Graph ... 22
Task 11 – Carry out the Computational Experiments... 24

Discussions ... 26
Exercises... 26
Appendix 1. The Program Code of the Serial Floyd Algorithm... 26

File SerialFloyd.cpp.. 26
File SerialFloydTest.cpp... 28

Appendix 2. The Program Code of the Parallel Floyd Algorithm .. 28
File ParallelFloyd.cpp... 28
File ParallelFloydTest.cpp... 33

Mathematical models in the form of graphs are widely used for modeling various phenomena, processes

and systems. As a result, many theoretical and applied problems may be solved by means of various procedures
of graph model analysis. It is possible to select a set of typical algorithms of graph processing among all those
procedures. The problems of graph theory, modeling algorithms, analizing and solving problems based on
graphs are discussed in a number of books – see Section 11 "Parallel Algorithms of Graph Processing" of the
training materials.

 Lab Objective
The objective of the lab is to develop a parallel program, which solves the problem of searching the shortest

path with the use of Floyd algorithm. The lab assignments include:
• Exercise 1 – State the shortest path problem.
• Exercise 2 – Code the serial Floyd program.
• Exercise 3 – Develop the parallel Floyd algorithm.
• Exercise 4 – Code the parallel Floyd program.

Estimated time to complete this lab: 90 minutes.
The lab students are assumed to be familiar with the related section of the training material: Section 4

"Parallel programming with MPI", Section 6 "Principles of parallel method development" and Section 11
"Parallel Algorithms of Graph Processing". Besides, the preliminary lab "Parallel programming with MPI" and
Lab "Parallel algorithm of matrix vector multiplication" are assumed to have been done.

 Exercise 1 – State the Shortest Path Problem
In order to do this Exercise it is necessary to study the Floyd algorithm.
Let G be a graph

),(RVG = ,

for which the set V of vertices , , is defined , and the set of arcs iv ni ≤≤1

),(
jj tsj vvr = , , mj ≤≤1

is defined by the set R. Generally, the arcs may be assigned certain numerical characteristics (weights) ,

 (the weighted graph). An example of the weighted graph is given in Figure 5.1.
jw

mj ≤≤1

0

2

1

4

5

3

1
52

1

4

2

3
7

1

8

Figure. 5.1. Example of the Weighted Oriented Graph

Presenting dense graphs, almost all the nodes of which are linked by arcs (i.e.), may be efficiently
described by means of the adjacency matrix

2~ nm

)(ijaA = , , , i≤1 nj ≤

the nonzero values of which correspond to the arcs of the graph

,
,),(

.,
,0

),,(

ji
Rvv

otherwise
if
ifvvw

a
jiji

ij =
∈

⎪
⎩

⎪
⎨

⎧

∞
=

(the infinity sign is used in a corresponding position to denote the absence of an arc between the vertices in the
adjacency matrix. In computations the infinity sign may be replaced by, for instance, a negative number). For
instance, the adjacency matrix, which corresponds to the graph in Figure 5.1, is shown in Figure5.2

2

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∞∞∞∞
∞∞∞

∞∞∞∞
∞∞
∞∞∞∞∞

∞∞

01
502
10

4108
0

7230

Figure. 5.2. The Adjacency Matrix for the Graph in Figure 5.1

We will discuss further the aspects of parallel algorithm development on graphs using the problem of
searching the shortest paths among all the pairs of destination vertices for the given graph G. As a practical
example we may use the problem of working out the transport route between various cities, if the distances
between them are given, and all the problems alike.

The initial information for the problem of searching the shortest paths is the weighted graph ,
which contains n vertices (). Each arc of the graph is assigned non-negative weight. The graph is
assumed to be oriented. If there is an arc from the vertex i to the vertex j, it should not be supposed that there is
an arc from j to i. In case when the vertices are connected by inverse arcs, the weights assigned to the arcs may
not coincide.

),(RVG =
nV =||

As a method for solving the problem of searching all the shortest paths, we will further use Floyd algorithm
(see Section 11 "Parallel Algorithms of Graph Processing" of the training materials).

Generally, the algorithm may be presented in the following way:

// Serial Floyd algorithm
for (k = 0; k < n; k++)
 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++)
 A[i,j] = min(A[i,j],A[i,k]+A[k,j]);
}

(the implementation of operation min choosing the minimum value must be performed with regard to the
method of describing nonexistent graph arcs in the adjacency matrix). As it can be noted, while the algorithm is
performed the adjacency matrix A changes. After the termination of computations, the required result (the length
of the minimum path) will be stored in matrix A.

As it can be noted, the complexity of the Floyd algorithm is of order. 3n
Additional information on the Floyd algorithm may be obtained in Section 11 "Parallel Algorithms of

Graph Processing" of the training materials.

 Exercise 2 – Code the Serial Floyd Program
The Exercise implies the necessity to develop the serial Floyd algorithm. The initial version of the program

to be developed is given in the project SerialFloyd, which contains a part of the initial code. In the course of
doing the Exercise, it is necessary to add the available program version by the initial data input operations, the
Floyd algorithm implementation and testing the correctness of the program results.

 Task 1 – Open the project SerialFloyd
Open the project SerialFloyd using the following steps:
• Start the application Microsoft Visual Studio 2005, if it has not been started yet,
• Execute the command Open→Project/Solution in the menu File,
• Choose the folder с:\MsLabs\ SerialFloyd in the dialog window Open Project,
• Make the double click on the file SerialFloyd.sln or execute the command Open after selecting the

file.
After the project has been opened in the window Solution Explorer (Ctrl+Alt+L), make the double click on

the file of the initial code SerialFloyd.cpp, as it is shown in Figure 5.3. After that, the code, which has to be
enhanced, will be opened in the workspace of Visual Studio.

3

Figure. 5.3. Opening the File SerialFloyd.cpp

The file SerialFloyd.cpp provides access to the necessary libraries and also contains the initial version of
the head function of the program – the function main. The available program variant contains the declaration of
variables and printout of the initial program message. File SerialFloydTest.cpp contains the developed variant of
the test functions, which will be necessary for testing the correctness of the program to be developed.

Let us consider the variables, which are used in the main function of the application. The variable pMatrix
is the adjacency matrix. After the Floyd algorithm has finished its execution the variable will point to the result
of the algorithm. The variable Size defines the adjacency matrix size (or, which is the same, the number of
vertices).

 int *pMatrix; // Adjacency matrix
 int Size; // Size of adjacency matrix

It should be noted that in order to store the matrix pMatrix we should use a one-dimensional array, where
the matrix is stored element by element. Thus, the element, located at the intersection of the i-th row and the j-th
matrix column in a one-dimensional array, has the index i*Size+j.

The initial message input is provided by means of the following program lines:

 printf("Serial Floyd algorithm\n");
 getch();

Now it is possible to make the first application run. Execute the command Rebuild Solution in the menu
Build. This command makes possible to compile the application. If the application is compiled successfully (in
the lower part of the Visual Studio window there is the following message: "Rebuild All: 1
succeeded, 0 failed, 0 skipped"), press the key F5 or execute the command Start Debugging of
the menu Debug.

Right after the program start the following message will appear in the command console:
"Serial Floyd algorithm".

In order to exit the program, press any key.

 Task 2 – Input the Number of Vertices
In order to set the initial data of the serial Floyd algorithm, we will develop the function

ProcessInitialization. This function is intended for the initialization of all the variables used in the program, in
particularly for the input of the number of the processed vertices (the adjacency matrix size), the allocation of the
memory for the adjacency matrix and for filling this memory with the initial values. Thus, the function should
have the following heading:

// Function for allocating the memory and setting the initial values
void ProcessInitialization(double *&pMatrix, int& Size);

4

Let us enhance the program with the code, which allows to input the adjacency matrix size (to set the value
of the variable Size) and check the correctness of the input. For this purpose add the bold marked code given
below to the function ProcessInitialization and add the call of the function to the main function:

// Function for allocating the memory and setting the initial values
ProcessInitialization(int *&pMatrix, int& Size) { void

 do {
 printf("Enter the number of vertices: ");
 scanf("%d", &Size);
 if(Size <= 0)
 printf("The number of vertices should be greater than zero\n");
 } while(Size <= 0);

 printf("Using graph with %d vertices\n", Size);
}

The user is given the opportunity to enter the number of vertices in the adjacency matrix, which is read
from the standard input stream stdin and stored in the integer variable Size. The value of the variable Size is
tested further (it should be greater than zero), in case of the invalid input the latter is repeated and at last the
input value is printed out (Figure 5.4).

Compile and run the application. Make sure that in case of inputting a negative value of the variable Size,
the program gives the diagnostic message: "The number of vertices should be greater than
zero".

Figure. 5.4. Setting the Number of the Vertices

Then it is necessary to add memory allocation for the adjacency matrix to the function ProcessInitialization
and initialize the matrix. For this purpose the bold marked code must be added to the function
ProcessInitialization:

// Function for allocating the memory and setting the initial values
void ProcessInitialization(int *&pMatrix, int& Size) {
 <…>
 // Allocate memory for the adjacency matrix
 pMatrix = new int[Size * Size];

 // Data initalization
 DummyDataInitialization(pMatrix, Size);
}

The immediate adjacency matrix initialization will be executed by a special function. At the first stage it is
possible to use the simple method of implementation, containing the set of data, the correctness of which can be
easily checked. There is a stub version of this function in the file (DummyDataInitialization), it is only necessary
to add the following code to the function:

// Function for simple setting the initial data
void DummyDataInitialization(int *pMatrix, int Size) {
 for(int i = 0; i < Size; i++)
 for(int j = i; j < Size; j++) {
 if(i == j) pMatrix[i * Size + j] = 0;
 else
 if(i == 0) pMatrix[i * Size + j] = j;
 else pMatrix[i * Size + j] = -1;

 pMatrix[j * Size + i] = pMatrix[i * Size + j];

5

6

 }
}

As it can be seen from the given code, this function fills the adjacency matrix in rather a simple way: the
main matrix diagonal is filled with zeros, the elements located in the first matrix row are filled the column
number, the rest of the elements located higher that the main diagonal are filled with minus ones (which signifies
the absence of arcs among the vertices). The elements located lower than the main diagonal are filled with the
values of the elements symmetric about the diagonal. Thus, if the user has entered the adjacency matrix size
equal to 4, the matrix will be defined the following way:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−
−−
−−

0113
1012
1101

3210

(setting the matrix by means of a random number generator will be discussed in Task 5).
This way of setting the elements simplifies the testing of the program execution as it sets the graph with a

simple structure: the vertex 0 is connected with the bidirectional arcs with all the rest of the vertices in the graph,
the weight of the arc is equal to the number of the vertex, to which the vertex number 0 is connected by the arc
(see Figure 5.5).

n

1

4

2

3
0

5

...

1

2

3

4
5

n

Figure. 5.5. Test Graph for the Floyd Algorithm

Compile and run the application (execute the command Rebuild Solution in the menu Build). If there are
any errors in the application, compare your code to the code given in the Exercise. After all the debugging is
completed, run the application.

Let us develop one more function, which will further help to control the program execution. This is the
function of the formatted adjacency matrix output PrintMatrix. The preliminary version of the function may be
obtained in the file SerialFloydTest.cpp. It is possible to pass over to editing the file on the analogy with
choosing the file SerialFloyd.cpp in Task 1. The one-dimensional array, where the adjacency matrix is stored
rowwise and the matrix sizes both vertically (the number of rows RowCount) and horizontally (the number of
columns RowCount) are given as arguments to the function of the formatted matrix output PrintMatrix:

// Function for formatted matrix output
void PrintMatrix(int *pMatrix, int RowCount, int ColCount) {
 for(int i = 0; i < RowCount; i++) {
 for(int j = 0; j < ColCount; j++)
 printf("%7d", pMatrix[i * ColCount + j]);
 printf("\n");
 }
}

Let us add the call of the function PrintMatrix to the function main of the application immediately after the
call of the function ProcessInitialization. It should be done in order to test the correctness of setting the initial
data:

...

7

 // Process initialization
 ProcessInitialization(pMatrix, Size);

 printf("The matrix before Floyd algorithm\n");
 PrintMatrix(pMatrix, Size, Size);
...

Compile and run the application. Make sure that the data input is performed according to the above-
described rules (See Figure 5.6). Run the application several times, set different adjacency matrix sizes.

Figure. 5.6. The Result of the Program Execution on the Completion of Task 2

 Task 3 –Terminatee the Program Execution
In this Task before the implementation of the Floyd algorithm we should develop a function for correct

program termination. For this purpose it is necessary to deallocate the memory, which has been allocated
dynamically in the course of the program execution. Let us develop the corresponding function
ProcessTermination. The adjacency matrix pMatrix must be given to the function ProcessTermination as
argument:

// Function for computational process termination
void ProcessTermination(int *pMatrix) {
 delete []pMatrix;
}

The call of the function ProcessTermination should be added to the main function immediately before the
termination of the main function main, when the adjacency matrix is not needed any longer:

...
 // Process termination
 ProcessTermination(pMatrix);

 return 0;
}

Compile and run the application. Make sure it is executed correctly.

 Task 4 – Implement the Floyd Algorithm
Let us develop the main computational part of the program. In order to execute the Floyd algorithm, we

will develop the function SerialFloyd, which receives the adjacency matrix pMatrix of size Size as input
parameters.

According to the algorithm given in Exercise 1 the code of the function should be as follows:

// Function for the serial Floyd algorithm
void SerialFloyd(int *pMatrix, int Size) {
 int t1, t2;
 for(int k = 0; k < Size; k++)
 for(int i = 0; i < Size; i++)
 for(int j = 0; j < Size; j++)
 if((pMatrix[i * Size + k] != -1) &&
 (pMatrix[k * Size + j] != -1)) {
 t1 = pMatrix[i * Size + j];
 t2 = pMatrix[i * Size + k] + pMatrix[k * Size + j];
 pMatrix[i * Size + j] = Min(t1, t2);

8

 }
}

As it has already been noted, the function of choosing the minimum value should be in agreement with the
selected way of designating the infinity. The value -1 has been chosen to denote the infinitely in this lab. Let us
implement this function and call it Min:

int Min(int A, int B) {
 int Result = (A < B) ? A : B;

 if((A < 0) && (B >= 0)) Result = B;
 if((B < 0) && (A >= 0)) Result = A;
 if((A < 0) && (B < 0)) Result = -1;

 return Result;
}

Let us call the function SerialFloyd from the main program. To test the correctness of the algorithm
execution, we will print out the obtained matrix:

 <…>

 // Serial Floyd algorithm
 SerialFloyd(pMatrix, Size);

 printf("The matrix after Floyd algorithm\n");
 PrintMatrix(pMatrix, Size, Size);
...

Compile and run the application. Analyze the result of the program execution. If the algorithm has been
implemented correctly, the result matrix must have the following structure: all the elements located on the main
diagonal are equal to zero; the remaining elements are equal to the sum of the row number and the column
number of the element; the rows and the columns are enumerated starting with zero. Thus, for the matrix
described in Task 2 the result should be the following (see also Figure 5.7):

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0543
5032
4301
3210

Figure. 5.7. The Result of the Floyd Algorithm Execution for Test Matrix Consisting of 4 Elements

 Task 5 – Carry out the Computational Experiments
In order to test the further speed up of the parallel program execution, it is necessary to carry out

experiments on the computation of the execution time for the serial program. It is reasonable to analyze the
execution time of the algorithm for large enough data amounts. The data will be set by means of random number
generator. For this purpose we will develop the function of element setting RandomDataInitialization (the
random number generator is initialized by the current clock):

9

// Function for initializing the data by the random generator
void RandomDataInitialization(int *pMatrix, int Size) {
 srand((unsigned)time(0));

 for(int i = 0; i < Size; i++)
 for(int j = 0; j < Size; j++)
 if(i != j) {
 if((rand() % 100) < InfinitiesPercent)
 pMatrix[i * Size + j] = -1;
 else
 pMatrix[i * Size + j] = rand() + 1);
 }
 else
 pMatrix[i * Size + j] = 0;
}

We will call this function instead of the previously developed function DummyDataInitialization in the
function ProcessInitialization:

// Function for allocating the memory and setting the initial values
void ProcessInitialization(int *&pMatrix, int& Size) {
..<…>
 // Allocate memory for the adjacency matrix
 pMatrix = new int[Size * Size];

 // Data initalization
 //DummyDataInitialization(pMatrix, Size);
 RandomDataInitialization(pMatrix, Size);
}

Compile and run the application. Make sure that the data is generated randomly.
In order to determine the time, you should add the call of the functions, which allow you to find out the

execution time of the program or its part, to the obtained program. We will use this function, as we have
previously done in other labs:

time_t clock(void);

To compute the execution time you will need three additional variables, which must be declared in the
function main:

int main(int argc, char *argv[]) {
 int *pMatrix = 0; // Adjacency matrix
 int Size = 0; // Size of adjacency matrix

 time_t start, finish;
 double duration = 0.0;
...

Let us add the computation and output of the Floyd algorithm execution time to the program code. For this
purpose let us clock in before and after the call of the function SerialFloyd:

.. <…>

 start = clock();
 // Parallel Floyd algorithm
 SerialFloyd(pMatrix, Size);
 finish = clock();

 printf("The matrix after Floyd algorithm\n");
 PrintMatrix(pMatrix, Size, Size);

 duration = (finish - start) / double(CLOCKS_PER_SEC);
 printf("Time of execution: %f\n", duration);
...

Compile and run the application. In order to carry out the computational experiments of large amounts of
data, switch off the data print before and after the Floyd algorithm (transforming the corresponding code lines
into comments). Carry out the computational experiments and fill the third column of the following table:

Table 5.1. The Results of the Computational Experiments for the Floyd Algorithm

Test Number The Number of Vertices in the Graph Algorithm Execution Time (sec.)

1 10
2 500
3 600

4 700

5 800

6 900

7 1,000

Use the results of the experiments and estimate the nature of dependence of the Floyd algorithm execution
time against the number of graph vertices. Make sure that this dependence is cubic (if the amount of data is
increased twice, then the algorithm execution time increases eight times etc.).

Let us estimate the Floyd algorithm complexity (see Section 11 "Parallel Algorithms of Graph Processing"
of the training materials). The algorithm assumes the execution of Size3 operations:

τ⋅= 3
1 SizeT , (5.1)

where τ is the execution time of the operation of adjacency matrix element comparison carried out by the
algorithm.

Complete the table of comparison of the experiment execution time to the time obtained according to
formula (5.1). In order to compute the execution time of the basic comparison operation, we will use the
following method: let us choose one of the experiments as a pivot (for instance, the experiment on processing the
graph containing 800 vertices) and divide the execution time of this experiment by the number of the executed
operations. Thus, we will compute the execution time of the operation τ. Then we will use this value and
compute the theoretical execution time for all the other experiments.

Carry out the above-described computations and complete the Table 5.2.

Table 5.2. The Comparison of the Experimental and the Theoretical Floyd Algorithm Execution Time

The Execution Time of the Basic Comparison Operation τ (sec):
Test Number The Number of Vertices in

the Graph
Execution
Time (sec)

Theoretical
Time (sec)

1 10

2 500
3 600
4 700
5 800
6 900
7 1,000

It should be noted that the basic comparison operation execution time depends generally on the number of
the processed vertices. This dependence can be explained by the computer architecture properties. If the amount
of vertices is small, the data can be fully located in cache memory of the processor, and the access to the memory
is fast. If the algorithm operates with medium size data, which can be fully located in RAM, but not in cache, the
execution time for a basic comparison operation will be somewhat bigger, as the access time to the RAM is
greater than the access time to cache memory. If the amount of data is large enough and they can not be located
in the RAM, the swap file mechanism is involved. The data is stored on the external storage, and read and write
time for the external storage exceeds significantly the recording time to the RAM area. Thus, choosing an
experiment as a pivot (the experiment, for which the basic comparison operation execution time is calculated),
we should be oriented at some average situation. That is why we have chosen the experiment on processing the
graph with 800 vertices as a pivot.

10

 Exercise 3 –Develop the Parallel Floyd Algorithm
It order to do the Exercise you should study the principles of parallelizing the Floyd algorithm. For this

purpose you should decompose the problem, analyze the information interactions among the subtasks, and
distribute subtasks among the processes.

 Subtask Definition
As the general scheme of the Floyd algorithm suggests, the main computations in solving the problem of
searching the shortest path consists in choosing the minimum values. It is not worthwhile to parallelize this
rather simple operation, as it will not speed up the computation significantly. It is more efficient to update the
values of matrix A simultaneously, as it will make parallel computations more effective (the efficiency of this
approach to parallelizing is shown in Section 11 "Parallel Algorithms of Graph Processing" of the training
materials).

As a result, the necessary conditions for parallel computations are provided. Thus, the update operation of
matrix element may be used as the basic computational subtask (the indices of the updated elements will be used
to point to the subtasks).

 Choosing the Information Dependencies
Computations in the subtasks become possible only if each subtask (i , j) contains the elements Ai j , Ai k , Ak j

of the matrix A, which are necessary for computations. To eliminate data doubling we will place the only
element A i j in the subtask (i , j). Obtaining all the other necessary values may be provided only by means of data
transmission. Thus, each element Ak j of the row k of the matrix A must be transmitted to all the subtasks (k, j),
1≤ j≤ n , and each element Ai k of the column k of the matrix A must be transmitted to all the subtasks (i ,k),
1≤ i≤ n , - see Figure 5.8.

 k

k

Figure. 5.8. The Information Dependencies of the Basic Computational Subtasks (the arrows show
the direction of exchanging values at iteration k)

Scaling and Distributing the Subtasks among Processors
As a rule, the number of available processors p is considerably smaller than the number of basic subtasks

 (). The use of block-striped scheme of the matrix A partitioning is a possible way to aggregate the
computations. This approach corresponds to uniting in one basic subtask the computations connected with
updating the elements of one or several rows (horizontal partitioning) or columns (vertical partitioning) of matrix
A. These two partition types are practically equal. With regard to the fact that for the algorithmic language C
arrays are located rowwise, we will further analyze only partitioning the matrix A into horizontal stripes.

2n 2np <<

It should be noted that in case of this method of data partitioning, it is necessary to transmit among the
subtasks only the elements of one of matrix A rows. The network topology for efficient execution of this
communication operation is a hypercube or a complete graph.

Exercise 4 – Code the Parallel Floyd Program
In order to perform the Tasks, you will have to implement the parallel Floyd algorithm. This Exercise is

aimed at:
• Enhancing the practical knowledge on parallel program development,
• Developoffing the parallel program for implementing the Floyd algorithm.
As previously, the parallel program to be developed, will be composed of the following basic parts:

11

• Initialization of the MPI environment,
• The main part of the program, where the necessary algorithm of solving the stated problem is

implemented, and the message exchange among the processes executed in parallel is carried out,
• The termination of MPI program.
Lab students are supposed to be familiar with Section 4 "Parallel Programming with MPI".

Task 1 – Open the Project ParallelFloyd
Open the project ParallelFloyd using the following steps:
• Start the application Microsoft Visual Studio 2005, if it has not been started yet,
• Execute the command Open→Project/ Solution in the menu File,
• Choose the folder с:\MsLabs\ ParallelFloyd, in the dialog window Open Project,
• Make the double click on the file ParallelFloyd.sln or select it and execute the command Open.
After the project has been opened in the window Solution Explorer (Ctrl+Alt+L), make the double click on

the file of the initial code ParallelFloyd.cpp, as it is shown in Figure 5.9. After that, the code, which is to be
enhanced, will be opened in the workspaceof Visual Studio.

Figure. 5.9. Opening the File ParallelFloyd.cpp

The main function of the parallel algorithm to be developed, which contains the declaration of the
necessary variables, is located in the file ParallelFloyd.cpp. The following functions copied from the serial are
also located in the file ParallelFloyd.cpp: DummyDataInitialization, RandomDataInitialization and Min.
Besides, you can also see the function PrintMatrix responsible for test data output in the file
ParallelFloydTest.cpp (the purpose of the function is considered in detail in Exercise 2 of this lab). These
functions may be also used in the parallel program. Besides, the drafts for the functions of the computation
process initialization (ProcessInitialization) and process termination (ProcessTermination) are also located there.

Compile and run the application using the Visual Studio. Make sure that the initial message
"Parallel Floyd algorithm"

is output into the command console.

Task 2 –Initialize and Terminate the Parallel Program
As is has been noted previously, there should be the header file "mpi.h" in the parallel program

#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <cmath>
#include <algorithm>

12

13

#include <mpi.h>

It is necessary to initialize the environment of the MPI program execution in the main function, to
determine the number of processes available for MPI program, to determine the process rank in communicator
MPI_COMM_WORLD, and also to set global variables for storing these values (ProcNum and ProcRank
correspondingly). Add the following selected code:

int ProcNum; // Number of available processes
int ProcRank; // Rank of current process

void main(int argc, char* argv[]) {
 int *pMatrix; // Adjacency matrix
 int Size; // Size of adjacency matrix
 int *pProcRows; // Process rows
 int RowNum; // Number of process rows

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &ProcNum);
 MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank);

 if(ProcRank == 0)
 printf("Parallel Floyd algorithm \n");

 MPI_Finalize();
}

Compile the parallel application using Visual Studio (execute the command Rebuild Solution of the menu
option Build). In order to run the parallel program you should start the program Сommand prompt, doing the
following:

1. Press the key Start, and then Run,
2. Type the name of the program cmd in the dialog window, which appears on the screen (Figure 5.10)

Figure. 5.10. The Start of the Command Prompt

In the command line go to the folder, which contains the developed program (Figure 5.11):

Figure. 5.11. Setting the Folder, which Contains the Parallel Program

On the analogy to the program start from the previously labs, type the command (Figure 5.12) in order to
execute the program using 4 processes:

mpiexec –n 3 ParallelFloyd.exe

Figure. 5.12. Starting the Parallel Program

Make sure that initial message
"Parallel Floyd algorithm"

is output to the command console.

 Task 3 – Input the Initial Data
Let us implement the data input. We should enhance our program with the code, which provides setting the

number of vertices of the processed graph and allocates memory for the adjacency matrix. As in the other labs,
setting the initial data will be executed by one of the processes (let it be the process with the rank 0). Then
according to the scheme of parallel computations given in Exercise 3, the adjacency matrix is distributed among
all the processes so that each of them processes a continuous sequence (stripe) of data. It should be noted that the
first version of the program to be developed is developed for the case when the number of vertices in the graph is
divisible by the number of processes without remainder, i.e. the stripes on all the processes contain the same
number of matrix rows. This number will be stored in the variable RowNum. The stripe of each of the processes
will be stored in the variable pProcRows. As a result of the Floyd algorithm execution, each process obtains
RowNum result matrix rows. Then the data should be collected on the root process again (the process with the
rank 0).

In order to initialize the computations we will develop the function ProcessInitialization:

// Function for allocating the memory and setting the initial values
void ProcessInitialization(int *&pMatrix, int *&pProcRows, int& Size,
 int& RowNum);

Thus, first we should input the amount of the number of vertices in the graph, i.e. set the value of the
variable Size. In order to input this number it is necessary to implement the dialog with the user. As in the
previous labs, we should check the correctness of the input value up. Add the bold marked code to the function
ProcessInitialization:

// Function for allocating the memory and setting the initial values
void ProcessInitialization(int *&pMatrix, int *&pProcRows, int& Size,
 int& RowNum) {
 setvbuf(stdout, 0, _IONBF, 0);
 if(ProcRank == 0) {
 do {
 printf("Enter the number of vertices: ");
 scanf("%d", &Size);
 if(Size < ProcNum)
 printf("The number of vertices should be greater than "
 "the number of processes\n");
 if(Size % ProcNum != 0)
 printf("The number of vertices should be divisible by "
 "the number of processes\n");
 } while((Size < ProcNum) || (Size % ProcNum != 0));

 printf("Using the graph with %d vertices\n", Size);
 }
}

14

15

Now it is necessary to broadcast the number of vertices to the other processes. For this purpose we should
use the function, which is familiar to those who have done the previous labs, of the broadcast MPI_Bcast. Add
the following code to the program (pay attention to the fact that the call of the function MPI_Bcast must be
executed by all the processes):

// Function for allocating the memory and setting the initial values
void ProcessInitialization(int *&pMatrix, int *&pProcRows, int& Size,
 int& RowNum) {
 if(ProcRank == 0) {
 <…>
 printf("Using graph with %d vertices\n", Size);
 }

 // Broadcast the number of vertices
 MPI_Bcast(&Size, 1, MPI_INT, 0, MPI_COMM_WORLD);

 // Number of rows for each process
 RowNum = Size / ProcNum;
}

Add the call of the initialization function to the main function:

int main(int argc, char* argv[]) {
 <…>);
 if(ProcRank == 0)
 printf("Parallel Floyd algorithm program\n");

 // Process initialization
 ProcessInitialization(pMatrix, pProcRows, Size, RowNum);

 MPI_Finalize();

 return 0;
}

Compile and run the application. Make sure that all the invalid situations are processed correctly. For this
purpose, start the application several times setting the various number of parallel processes (by means of the
utility mpiexec) and the various number of vertices in the processed graph.

After the number of vertices has been set, it is possible to allocate memory for the adjacency matrix and the
stripes assigned to the processes. Add the bold marked code to the function ProcessInitialization:

 <…>
 // Allocate memory for the current process rows
 pProcRows = new int[Size * RowNum];

 if(ProcRank == 0) {
 // Allocate memory for the adjacency matrix
 pMatrix = new int[Size * Size];

 // Data initalization
 DummyDataInitialization(pMatrix, Size);
 }
}

It should be noted that for the adjacency matrix on the root process, we have used the function of data
generation DummyDataInitialization, which was developed for the implementation of the serial application. Pay
attention to the fact that the function fills the array with the predictable values, which allow us to easily test the
program execution.

 Task 4 –Terminate the Calculations
In order to terminate the parallel program correctly, we should deallocate the memory, which has been

allocated dynamically in the course of the program execution. Let us develop the corresponding function
ProcessTermination.

16

The memory for the adjacency matrix pMatrix was allocated on the root process; besides, memory was
allocated on all the processes for the stripes pProcRows. These two arrays must be given to the function
ProcessTermination as arguments:

// Function for computational process termination
void ProcessTermination(int *pMatrix, int *pProcRows) {
 if(ProcRank == 0)
 delete []pMatrix;
 delete []pProcRows;
}

The call of the termination function must be added to the function main immediately before the call of the
function MPI_Finalize:

...
 // Process termination
 ProcessTermination(pMatrix, pProcRows);

 MPI_Finalize();
}

The commands for printing the adjacency matrix on the root process should be added to the code of the
main function (use the function PrinMatrix, which was implemented in the course of serial application
development). Compile and run the application. Make sure that the initial data is being set correctly.

Task 5 – Distribute the Data among the Processes
In accordance with the parallel computation scheme given in the previous Exercise, the adjacency matrix

must be distributed among the processes in equal stripes.
The function DataDistribution is responsible for data distribution. The adjacency matrix pMatrix, the

number of graph vertices (the matrix size) and the process stripe pProcRows, and also the size of the stripe
RowNum must be given to the function as arguments:

// Function for the data distribution among the processes
void DataDistribution(int *pMatrix, int *pProcRows, int Size, int RowNum);

After that it is necessary to use the generalized operation of data transmission from one process to all
processes (data distribution) and to distribute the adjacency matrix among the processes:

// Function for the data distribution among the processes
void DataDistribution(int *pMatrix, int *pProcRows, int Size, int RowNum) {
 MPI_Scatter(pMatrix, RowNum * Size, MPI_INT, pProcRows, RowNum * Size,
 MPI_INT, 0, MPI_COMM_WORLD);
}

Correspondingly, it is necessary to call the function DataDistribution from the main program right after the
call of the initialization function ProcessInitialization:

 // Process initialization
 ProcessInitialization(pMatrix, pProcRows, Size, RowNum);

 // Distributing the initial data among processes
 DataDistribution(pMatrix, pProcRows, Size, RowNum);

Now let us check the correctness of the data distribution among the processes up. For this purpose we
should print the initial adjacency matrix and the stripes located on each of the processes after the execution of the
function DataDistribution. Let us add to the application code one more function, which serves for checking the
correctness of the data distribution. This function will be referred to as TestDistribution. For this purpose we
should develop one more function for debugging print besides the previously developed function PrintMatrix.
This function referred to as ParallelPrintMatrix will provide the sequential output of the matrix stripes by the
processes with the use of the function PrintMatrix. Add the following code to the program being developed:

// Function for formatted output of all stripes
void (int *pProcRoParallelPrintMatrix ws, int Size, int RowNum) {
 for(int i = 0; i < ProcNum; i++) {
 if (ProcRank == i) {
 printf("ProcRank = %d\n", ProcRank);
 printf("Proc rows:\n");

17

 PrintMatrix(pProcRows, RowNum, Size);
 }
 MPI_Barrier(MPI_COMM_WORLD);
 }
}

Finally, it is possible to implement the function TestDistribution using all the previously developed
functions of debugging print the following way:

// Function for testing the data distribution
void TestDistribution(int *pMatrix, int *pProcRows, int Size, int RowNum) {
 MPI_Barrier(MPI_COMM_WORLD);
 if (ProcRank == 0) {
 printf("Initial adjacency matrix:\n");
 PrintMatrix(pMatrix, Size, Size);
 }

 MPI_Barrier(MPI_COMM_WORLD);

 ParallelPrintMatrix(pProcRows, Size, RowNum);
}

The function TestDistribution resembles the previously developed functions, which have the analogous
purpose: the root process prints all the data, then the parallel program processes print their data one after another
(first the process with the rank 0, then the process with the rank 1 etc.)

Add the call of the test distribution function immediately after the function DataDistribution:
...
 // Distributing the initial data between processes
 DataDistribution(pMatrix, pProcRows, Size, RowNum);

 // Testing the distribution
 TestDistribution(pMatrix, pProcRows, Size, RowNum);
...

Compile the application. In case any errors are identified, check them comparing your code to the code
given here. Start the application, which uses three processes, and set the number of vertices in the processed
graph equal to 6. Make sure that data distribution is performed correctly (Figure 5.13).

Figure. 5.13. Data Distribution for the Parallel Program Using Three Processes

 Task 6 – Implement the Parallel Floyd Algorithm
Let us implement the parallel Floyd algorithm in the course of several sequential stages. Each of the stages

is simple enough and its correctness is easy to check.

18

Let us define the heading of the function, which implements the algorithm. It is necessary to have process
stripe pProcRows, the matrix size Size and the stripe size RowNum. As a result, the developed function will have
the following heading:

// Function for the parallel Floyd algorithm
void ParallelFloyd(int *pProcRows, int Size, int RowNum);

In accordance with the general scheme of the parallel Floyd algorithm it is necessary to carry out Size times
the operation, which updates the adjacency matrix. To carry out this operation all the processes need the matrix
row, the number of which coincides with the iteration number. This row does not have to be stored by the current
process. It means that it is necessary to broadcast this row among the processes in the course of the operation
execution. Besides, it is necessary to allocate memory for storing this row. Consequently, the program for the
parallel Floyd algorithm will look the following way at the first stage:

// Function for the parallel Floyd algorithm
void ParallelFloyd(int *pProcRows, int Size, int RowNum) {
 int *pRow = new int[Size];

 for(int k = 0; k < Size; k++) {
 // Distribute row among all processes
 RowDistribution(pProcRows, Size, RowNum, k, pRow);
 }
 delete []pRow;
}

The function RowDistribution used above must use the row number k in order to find the process, to which
the k-th adjacency matrix row belongs, and broadcast the row to the other processes. As previously, we will use
the function MPI_Bcast for such kind of exchange:

// Function for row broadcasting among all processes
void RowDistribution(int *pProcRows, int Size, int RowNum, int k,
 int *pRow) {
 int ProcRowRank = k / RowNum; // Process rank with the row k
 int ProcRowNum = k - ProcRowRank * RowNum; // Process row number

 if(ProcRowRank == ProcRank)
 // Copy the row to pRow array
 copy(&pProcRows[ProcRowNum*Size],&pProcRows[(ProcRowNum+1)*Size],pRow);

 // Broadcast row to all processes
 MPI_Bcast(pRow, Size, MPI_INT, ProcRowRank, MPI_COMM_WORLD);
}

Let us test the developed part of the parallel Floyd algorithm. For this purpose we will use the debugging
print, which outputs the row received by the process with the rank 0. Add the following code to the function
ParallelFloyd:

...
 for(int k = 0; k < Size; k++) {
 // Distribute row among all processes
 RowDistribution(pProcRows, Size, RowNum, k, pRow);

 if(ProcRank == 0) {
 printf("Row %d after distribution:", k);
 PrintMatrix(pRow, Size, 1);
 }
 }
...

It should be noted that to print each row of the adjacency matrix the function PrintMatrix is used as the
third parameter of this function is equal to 1 (this parameter determines the number of the matrix rows to be
printed). As a result of the code execution the rows of the adjacency matrix must appear on the console (the
structure of the test adjacency matrix was described in Task 2 of Exercise 2).

Transform the call of the function TestDistribution into the comment line in the function main, compile the
application. Run the application and make sure that the data rows are distributed correctly. The program output
for the test adjacency matrix of size 6x6 is given below in Figure 5.14.

Figure. 5.14. The Debugging Print for Testing the Function RowDistribution

 Task 7 – Implement the Floyd Algorithm Iterations
In accordance with the general scheme of the parallel Floyd algorithm, it is necessary to execute the

adjacency matrix update after broadcasting the next adjacency matrix row among the processes. The function
ParallelFloyd should look the following way:

// Function for the parallel Floyd algorithm
void ParallelFloyd(int *pProcRows, int Size, int RowNum) {
 int *pRow = new int[Size];
 int t1, t2;

 for(int k = 0; k < Size; k++) {

 // Distribute row among all processes
 RowDistribution(pProcRows, Size, RowNum, k, pRow);

 // Update adjacency matrix elements
 for(int i = 0; i < RowNum; i++)
 for(int j = 0; j < Size; j++)
 if((pProcRows[i * Size + k] != -1) &&
 (pRow [j] != -1)) {
 t1 = pProcRows[i * Size + j];
 t2 = pProcRows[i * Size + k] + pRow[j];
 pProcRows[i * Size + j] = Min(t1, t2);
 }
 }
 delete []pRow;
}

This stage should be tested as well as all the previous ones. Let us make use of the debugging print with the
help of the function ParallelPrintMatrix again. Put comment signs before the previous calls of the function and
add a new call of the function immediately after the call of the algorithm ParallelFloyd:

 // Distributing the initial data between processes
 DataDistribution(pMatrix, pProcRows, Size, RowNum);

 // Parallel Floyd algorithm
 ParallelFloyd(pProcRows, Size, RowNum);
 ParallelPrintMatrix(pProcRows, Size, RowNum);

For the data set by means of the function DummyDataInitialization, the result is known beforehand and
described in Task 4 of Exercise 2. Thus, for instance, if the size of the test adjacency matrix is equal to 6 and the
application uses three processes, the result should be the following (Figure 5.15).

19

Figure. 5.15. The Result of Testing the Parallel Floyd Algorithm Using Three Processes and the
Number of Graph Vertices Equal to Six

Compile and run the application. Check the correctness of the obtained partial results setting different
number of processes and different number of the test graph vertices.

 Task 8 – Collect the Result Matrix
As the final stage we have to collect the obtained matrix on the root process (the process with the rank 0). It

should be noted that this stage is not mandatory in case of algorithm execution, as the amount of data to be
processed may appear to be so significant that it would be impossible to locate it in the RAM of a computer. In
this lab this stage is discussed as an additional example of a training Exercise and also for the purpose of final
comparison of the parallel and serial calculation results.

In order to collect the data let us develop the function ResultCollection, which consists practically of the
call of the function MPI_Gather:

// Function for process result collection
void (int *pMatrix, int *pProcRows, int Size, int RowNumResultCollection) {
 MPI_Gather(pProcRows, RowNum * Size, MPI_INT, pMatrix, RowNum * Size,
 MPI_INT, 0, MPI_COMM_WORLD);

The call of the function from the main program:

 <…>
 // Parallel Floyd algorithm
 ParallelFloyd(pProcRows, Size, RowNum);
 ParallelPrintMatrix(pProcRows, Size, RowNum);

 // Process data collection
 ResultCollection(pMatrix, pProcRows, Size, RowNum);

After the collection execution, add print of the obtained matrix by means of the function PrintMatrix on the
root process of the parallel application to the code of the main application function. Compile and run the
application. Check the correctness of the program execution.

 Task 9 – Test the Parallel Program Correctness
After the completion of the program development, it is necessary to test the correctness of the program

execution. Let us develop the function TestResult for this purpose. This function will compare the results of the
serial program to the results of the parallel one. In order to execute the serial algorithm you may use the
previously developed function SeriaFloyd, which is located in the file ParallelFloydTest.cpp.

To make the serial algorithm SerialFloyd operate the same data as the developed parallel algorithm
ParallelFloyd, it is necessary to produce a copy of the data using the function CopyMatrix (which is also located
in the file ParallelFloyd.cpp):

// Function for copying the matrix
void CopyMatrix(int *pMatrix, int Size, int *pMatrixCopy) {
 copy(pMatrix, pMatrix + Size * Size, pMatrixCopy);

20

21

}

In order to check the correctness, let us compare the results of the serial Floyd algorithm to the result of the
developed parallel algorithm with the help of the function CompareMatrices which is also located in the file
ParallelFloydTest.cpp:

// Function for comparing the matrices
bool CompareMatrices(int *pMatrix1, int *pMatrix2, int Size) {
 return equal(pMatrix1, pMatrix1 + Size * Size, pMatrix2);
}

Let us add the calls of these functions to the source code. It is necessary to declare the variable
pSerialMatrix for storing the copy of the adjacency matrix, which parties processed in the serial Floyd algorithm,
in the function main. It is also necessary to make ready this copy:

...
 int RowNum; // Number of process rows
 int *pSerialMatrix = 0;

 <…>

 // Process initialization
 ProcessInitialization(pMatrix, pProcRows, Size, RowNum);

 if (ProcRank == 0) {
 // Matrix copying
 pSerialMatrix = new int[Size * Size];
 CopyMatrix(pMatrix, Size, pSerialMatrix);
 }
...

Besides, it is necessary to delete the allocated memory when it is not necessary any more:

...
 // Process termination
 ProcessTermination(pMatrix, pProcRows);
 if (ProcRank == 0)
 delete []pSerialMatrix;

 MPI_Finalize();

 return 0;
}

Then, add the function TestResult to the program code:

// Function for testing the result of parallel Floyd algorithm
void TestResult(int *pMatrix, int *pSerialMatrix, int Size) {
 MPI_Barrier(MPI_COMM_WORLD);

 if(ProcRank == 0) {
 SerialFloyd(pSerialMatrix, Size);
 if(!CompareMatrices (pMatrix, pSerialMatrix, Size)) {
 printf("The results of serial and parallel algorithms are "
 "NOT identical. Check your code\n");
 }
 else {
 printf("The results of serial and parallel algorithms are "
 "identical\n");
 }
 }
}

The result of the function execution is printing a diagnostic message. You can test the result of the parallel
execution regardless of the number of graph vertices with the help of this function.

Transform into comments the call of the functions using the debugging print, which have been previously
used for testing the correctness of the parallel application (the function TestDistribution, ParallelPrintMatrix,

PrintMatrix). Instead of the function DummyDataInitialization, which generates the initial data of the simple
type, call the function RandomDataInitialization, which generates the initial data by means of the random data
generator. Compile and run the application. Carry out experiment for different initial data amounts. Make sure
that the program operates correctly.

 Task 10 – Implement the Floyd Algorithm for Any Given Graph
The parallel application, which was developed in the course of executing the previous Tasks, was created

for the case when the number of vertices Size in graph is divisible by the number of processors ProcNum. In this
case the adjacency matrix is divided among the processes in equal stripes, and the number of rows RowNum
processed by the process is the same for all the processes.

Let us consider the case when the number of vertices Size is not multiple of the number of processes
ProcNum. In this case the value RowNum of the number of rows processed on each process may be different:
some processes will get ⎣ ProcNumSize ⎦ , and the rest of them - ⎡ ⎤ProcNumSize matrix rows of the adjacency
matrix (the operation means rounding the value down to the nearest smaller integer number, the operation

 means rounding the value up to the nearest greater integer number).
⎣ ⎦

⎡ ⎤
Let us eliminate the processing of an invalid situation in the function ProcessInitialization. This situation

occurs in the case when the number of graph vertices is not divisible by the number of processes. Now it is
necessary to determine how many adjacency matrix rows each process should process. One of the simplest
methods may consist in the following: all the processes except the last one (the process with the rank ProcNum-
1) are allocated ⎣ ProcNumSize ⎦ matrix rows. The last process is allocated all the other rows
(⎣ ⎦ (1−⋅− ProcNumProcNumSizeSize) rows. However, in this case the computational load may be distributed
among the processes unequally. Thus, for instance, if the adjacency matrix size is equal to five, and the parallel
application is run using three processes, the first two processes will be allocated a matrix row each, and the last
process will get three rows.

In order to avoid such inequality, we will use the distribution algorithm described below. Let us allocate the
rows to the processes sequentially: first, let us determine how many rows will be processed by the process with
the rank 0, then by the process with the rank 1 etc. The process with the rank 0 will be allocated
⎣ ProcNumSize ⎦ rows (the operation result ⎣ ⎦ coincides with the result of the integer division of the variable
Size by the variable ProcNum). After the execution of the operation, we should distribute

⎣ ProcNumSizeSize − ⎦ rows among the processes ProcNum-1 etc. As a result, each next process i will be
assigned the number of rows equal to the result of the integer division of the remaining row RestRows by the
number of remaining processes, i.e. ()⎣ ⎦iProcNumRestRows − rows.

Let us change the program code for calculating the value of the variable RowNum:

// Function for memory allocation and setting the initial values
void ProcessInitiliazation(int *&pMatrix, int *&pProcRows, int& Size,
 int& RowNum) {
...
 // Broadcast the number of vertices
 MPI_Bcast(&Size, 1, MPI_INT, 0, MPI_COMM_WORLD);

 // Number of rows for each process
 int RestRows = Size;
 for(int i = 0; i < ProcRank; i++)
 RestRows = RestRows - RestRows / (ProcNum - i);
 RowNum = RestRows / (ProcNum - ProcRank);

 // Allocate memory for the current process rows
 pProcRows = new int[Size * RowNum];
...
}

In case when the matrix is distributed among process unequally, we cannot use the function MPI_Scatter
for data distribution. Instead we should use the more general function MPI_Scatterv, which gives the opportunity
to one of the processes to distribute the data among the processes in blocks of different size.

In order to call the function MPI_Scatterv it is necessary to define the two auxiliary arrays, the size of
which coincides with the number of the available processes. Let us implement the necessary changes in the code
of the function DataDistribution:

22

23

// Function for the data distribution among the processes
void DataDistribution(int *pMatrix, int *pProcRows, int Size, int RowNum) {
 int *pSendNum; // Number of elements sent to the process
 int *pSendInd; // Index of the first data element sent to the process
 int RestRows = Size; // Number of rows, that haven’t been distributed yet

 // Allocate memory for temporary objects
 pSendInd = new int[ProcNum];
 pSendNum = new int[ProcNum];

 // Define the disposition of the matrix rows for current process
 RowNum = Size / ProcNum;
 pSendNum[0] = RowNum * Size;
 pSendInd[0] = 0;
 for (int i = 1; i < ProcNum; i++) {
 RestRows -= RowNum;
 RowNum = RestRows / (ProcNum - i);
 pSendNum[i] = RowNum * Size;
 pSendInd[i] = pSendInd[i - 1] + pSendNum[i - 1];
 }

 // Scatter the rows
 MPI_Scatterv(pMatrix, pSendNum, pSendInd, MPI_INT,
 pProcRows, pSendNum[ProcRank], MPI_INT, 0, MPI_COMM_WORLD);

 // Free allocated memory
 delete []pSendNum;
 delete []pSendInd;
}

Very much in the same way we will use the more general function MPI_Gatherv for data gathering instead
of the function MPI_Gather oriented at gathering the data of the same size from all the communicator processes.
As in case of using the function MPI_Scatterv, the use of the function MPI_Gatherv requires two additional
arrays:

// Function for process result collection
void (int *pMatrix, int *pProcRows, int Size, int RowNuResultCollection m) {
 int *pReceiveNum; // Number of elements, that current process sends
 int *pReceiveInd; // Offset for storing the data from current process
 int RestRows = Size; // Number of rows, that haven’t been gathered yet

 // Allocate memory for temporary objects
 pReceiveNum = new int [ProcNum];
 pReceiveInd = new int [ProcNum];

 // Determine the disposition of the result data block of current process
 RowNum = Size / ProcNum;
 pReceiveInd[0] = 0;
 pReceiveNum[0] = RowNum * Size;

 for(int i = 1; i < ProcNum; i++) {
 RestRows -= RowNum;
 RowNum = RestRows / (ProcNum - i);
 pReceiveNum[i] = RowNum * Size;
 pReceiveInd[i] = pReceiveInd[i - 1] + pReceiveNum[i - 1];
 }

 // Gather the whole matrix on the process 0
 MPI_Gatherv(pProcRows, pReceiveNum[ProcRank], MPI_INT,
 pMatrix, pReceiveNum, pReceiveInd, MPI_INT, 0, MPI_COMM_WORLD);

 // Free allocated memory
 delete []pReceiveNum;
 delete []pReceiveInd;

24

}

The necessary changes must be also implemented for the function RowDistribution, as the stripe sizes may
differ and the computation of the rank of the process, where the matrix row with the number k is located,
becomes more complicated. Let us change the function RowDistribution with regard to this fact:

// Function for row broadcasting among all processes
void RowDistribution(int *pProcRows, int Size, int RowNum, int k,
 int *pRow) {
 int ProcRowRank; // Process rank with the row k
 int ProcRowNum; // Process row number

 // Finding the process rank with the row k
 int RestRows = Size;
 int Ind = 0;
 int Num = Size / ProcNum;

 for(ProcRowRank = 1; ProcRowRank < ProcNum + 1; ProcRowRank ++) {
 if(k < Ind + Num) break;
 RestRows -= Num;
 Ind += Num;
 Num = RestRows / (ProcNum - ProcRowRank);
 }
 ProcRowRank = ProcRowRank - 1;
 ProcRowNum = k - Ind;

 if(ProcRowRank == ProcRank)
 // Copy the row to pRow array
 copy(&pProcRows[ProcRowNum*Size],&pProcRows[(ProcRowNum+1)*Size],pRow);

 // Broadcast row to all processes
 MPI_Bcast(pRow, Size, MPI_INT, ProcRowRank, MPI_COMM_WORLD);
}

Compile and run the application. Check the correctness of the parallel program by means of the function
TestResult.

 Task 11 – Carry out the Computational Experiments
The main challenge in the implementation of the parallel algorithms for solving complicated computational

problems is to provide the increase of speed up (in comparison with the serial algorithm) at the expense of using
several processors. The execution time of the parallel algorithm should be less than the execution time of the
serial algorithm.

Let us determine the parallel program execution time. For this purpose we will add clocking to the
program code. As the parallel algorithm includes the stages of data distribution, the Floyd algorithm execution
and collecting the processed values, then clocking should start immediately before the call of the function
DataDistribution, and stop right after the execution of the function DataCollection:

...
 double start, finish;
 double duration = 0.0;
...
 // Process initialization
 ProcessInitialization(pMatrix, pProcRows, Size, RowNum);

 start = MPI_Wtime();
 // Distributing the initial data between processes
 DataDistribution(pMatrix, pProcRows, Size, RowNum);

 // Testing the distribution
 //TestDistribution(pMatrix, pProcRows, Size, RowNum);

 // Parallel Floyd algorithm
 ParallelFloyd(pProcRows, Size, RowNum);

25

 //ParallelPrintMatrix(pProcRows, Size, RowNum);

 // Process data collection
 ResultCollection(pMatrix, pProcRows, Size, RowNum);
 finish = MPI_Wtime();

 //TestResult(pMatrix, pSerialMatrix, Size);

 duration = finish - start;
 if(ProcRank == 0)
 printf("Time of execution: %f\n", duration);
...

It is obvious that this way we will print the time spent on the execution of calculations by the process with
the rank 0. The execution time of the other processes may appear to be slightly different. But this difference must
not be significant, as we paid special attention to the equal loading (balancing) of processes at the stage of the
development of parallel algorithm.

Add the selected code to the main function. Compile and run the application. Carry out the computational
experiments and register the results in Table 5.3:

Тable 5.3. The Results of the Computational Experiments for the Parallel Floyd Algorithm

Execution Time
Parallel Floyd Algorithm.

Number of Processors
Test

Number
Number of

Vertices Serial Floyd Algorithm
2 4 8

1 10
2 500
3 600
4 700
5 800
6 900
7 1,000

The column "Serial Floyd Algorithm" is assigned for writing the execution times of the serial Floyd
algorithm measured in the course of testing the serial program in Exercise 2. Calculate the obtained computation
speed up as the ration of the serial algorithm time and the parallel algorithm time and give the results in Table
5.4.

Table 5.4. The Computation Speed Up Obtained for the Parallel Floyd Algorithm

Speed Up Test
Number 2 processors 4 processors 8 processors

1
2
3
4
5
6
7

In order to estimate the theoretical time of the parallel algorithm execution, if the algorithm was
implemented according to the computational scheme given in Exercise 3, you may use the following expression:

⎡ ⎤ ⎡ ⎤)()(log2
2 βατ nwpnpnnTp ⋅+⋅+⋅⋅= (5.2)

(the derivation of this expression is considered in detail in subsection 11.1.5 of Section 11 "Parallel Algorithms
of Graph Processing" of the training materials). Here n is the number of graph vertices, p is the number of
processes, τ is the execution time of the basic computational operation of choosing the minimum values (this
value was calculated in the course of testing the serial algorithm), α is the latency and β is the data
communication network bandwidth. You should use the values obtained in the course of executing the Compute
Cluster Server Lab 2 "Carrying out Jobs under Microsoft Compute Cluster Server 2003", as the values of the
latency and the bandwidth.

26

Calculate the theoretical time of the parallel algorithm execution using formula (5.2). Tabulate the results in
Table 5.5.

Table 5.5. The Comparison of the Experimental and the Theoretical Time of the Parallel Floyd Algorithm

Parallel Algorithm Execution Time
2 processors 4 processors 8 processors Test

Number
Number of

Vertices
Model Experiment Model Experiment Model Experiment

1 10
2 500
3 600
4 700
5 800
6 900
7 1,000

Discussions
• How great is the difference between the execution time of the serial Floyd algorithm and the parallel

algorithm? Why?
• Has there any speed up been obtained in the course of processing a graph containing 10 vertices? Why?
• Were the theoretical and the experiment execution time congruent? What might be the reason for

incongruity?

Exercises
• Study other parallel algorithms of graph processing (the Prim algorithm for finding the minimum

spanning tree, the Dejkstra method for solving the problem of finding the shortest path from one of the graph
vertices to the other ones – see Section 11 "Parallel Algorithms of Graph Processing" of the training materials).
Develop the programs, which implement these algorithms.

 Appendix 1. The Program Code of the Serial Floyd Algorithm

 File SerialFloyd.cpp
#include <cstdlib>
#include <cstdio>
#include <ctime>
#include <algorithm>

#include "SerialFloyd.h"
#include "SerialFloydTest.h"

using namespace std;

const double InfinitiesPercent = 50.0;
const double RandomDataMultiplier = 10;

int Min(int A, int B) {
 int Result = (A < B) ? A : B;

 if((A < 0) && (B >= 0)) Result = B;
 if((B < 0) && (A >= 0)) Result = A;
 if((A < 0) && (B < 0)) Result = -1;

 return Result;
}

int main(int argc, char* argv[]) {
 int *pMatrix; // Adjacency matrix

27

 int Size; // Size of adjacency matrix

 time_t start, finish;
 double duration = 0.0;

 printf("Serial Floyd algorithm\n");

 // Process initialization
 ProcessInitialization(pMatrix, Size);

 printf("The matrix before Floyd algorithm\n");
 PrintMatrix(pMatrix, Size, Size);

 start = clock();
 // Parallel Floyd algorithm
 SerialFloyd(pMatrix, Size);
 finish = clock();

 printf("The matrix after Floyd algorithm\n");
 PrintMatrix(pMatrix, Size, Size);

 duration = (finish - start) / double(CLOCKS_PER_SEC);
 printf("Time of execution: %f\n", duration);

 // Process termination
 ProcessTermination(pMatrix);

 return 0;
}

// Function for allocating the memory and setting the initial values
void ProcessInitialization(int *&pMatrix, int& Size) {
 do {
 printf("Enter the number of vertices: ");
 scanf("%d", &Size);

 if(Size <= 0)
 printf("The number of vertices should be greater then zero\n");
 } while(Size <= 0);

 printf("Using graph with %d vertices\n", Size);

 // Allocate memory for the adjacency matrix
 pMatrix = new int[Size * Size];

 // Data initalization
 DummyDataInitialization(pMatrix, Size);
 //RandomDataInitialization(pMatrix, Size);
}

// Function for computational process termination
void ProcessTermination(int *pMatrix) {
 delete []pMatrix;
}

// Function for simple setting the initial data
void DummyDataInitialization(int *pMatrix, int Size) {
 for(int i = 0; i < Size; i++)
 for(int j = i; j < Size; j++) {
 if(i == j) pMatrix[i * Size + j] = 0;
 else
 if(i == 0) pMatrix[i * Size + j] = j;
 else pMatrix[i * Size + j] = -1;

28

 pMatrix[j * Size + i] = pMatrix[i * Size + j];
 }
}

// Function for initializing the data by the random generator
void RandomDataInitialization(int *pMatrix, int Size) {
 srand((unsigned)time(0));

 for(int i = 0; i < Size; i++)
 for(int j = 0; j < Size; j++)
 if(i != j) {
 if((rand() % 100) < InfinitiesPercent)
 pMatrix[i * Size + j] = -1;
 else
 pMatrix[i * Size + j] = rand() + 1;
 }
 else
 pMatrix[i * Size + j] = 0;
}

// Function for the serial Floyd algorithm
void SerialFloyd(int *pMatrix, int Size) {
 int t1, t2;
 for(int k = 0; k < Size; k++)
 for(int i = 0; i < Size; i++)
 for(int j = 0; j < Size; j++)
 if((pMatrix[i * Size + k] != -1) &&
 (pMatrix[k * Size + j] != -1)) {
 t1 = pMatrix[i * Size + j];
 t2 = pMatrix[i * Size + k] + pMatrix[k * Size + j];
 pMatrix[i * Size + j] = Min(t1, t2);
 }
}

 File SerialFloydTest.cpp
#include <cstdio>
#include "SerialFloydTest.h"

using namespace std;

// Function for formatted matrix output
void PrintMatrix(int *pMatrix, int RowCount, int ColCount) {
 for(int i = 0; i < RowCount; i++) {
 for(int j = 0; j < ColCount; j++)
 printf("%7d", pMatrix[i * ColCount + j]);
 printf("\n");
 }
}

 Appendix 2. The Program Code of the Parallel Floyd Algorithm

 File ParallelFloyd.cpp
#include <cstdlib>
#include <cstdio>
#include <ctime>
#include <algorithm>
#include <mpi.h>

#include "ParallelFloyd.h"
#include "ParallelFloydTest.h"

29

using namespace std;

int ProcRank; // Rank of current process
int ProcNum; // Number of processes

const double InfinitiesPercent = 50.0;
const double RandomDataMultiplier = 10;

int Min(int A, int B) {
 int Result = (A < B) ? A : B;

 if((A < 0) && (B >= 0)) Result = B;
 if((B < 0) && (A >= 0)) Result = A;
 if((A < 0) && (B < 0)) Result = -1;

 return Result;
}

int main(int argc, char* argv[]) {
 int *pMatrix; // Adjacency matrix
 int Size; // Size of adjacency matrix
 int *pProcRows; // Process rows
 int RowNum; // Number of process rows

 double start, finish;
 double duration = 0.0;
 int *pSerialMatrix = 0;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &ProcNum);
 MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank);

 if(ProcRank == 0)
 printf("Parallel Floyd algorithm\n");

 // Process initialization
 ProcessInitialization(pMatrix, pProcRows, Size, RowNum);

 if (ProcRank == 0) {
 // Matrix copying
 pSerialMatrix = new int[Size * Size];
 CopyMatrix(pMatrix, Size, pSerialMatrix);
 }

 start = MPI_Wtime();
 // Distributing the initial data between processes
 DataDistribution(pMatrix, pProcRows, Size, RowNum);
 // Testing the distribution
 //TestDistribution(pMatrix, pProcRows, Size, RowNum);

 // Parallel Floyd algorithm
 ParallelFloyd(pProcRows, Size, RowNum);
 //ParallelPrintMatrix(pProcRows, Size, RowNum);

 // Process data collection
 ResultCollection(pMatrix, pProcRows, Size, RowNum);
 //if(ProcRank == 0)
 // PrintMatrix(pMatrix, Size, Size);
 finish = MPI_Wtime();

 //TestResult(pMatrix, pSerialMatrix, Size);

30

 duration = finish - start;
 if(ProcRank == 0)
 printf("Time of execution: %f\n", duration);

 if (ProcRank == 0)
 delete []pSerialMatrix;

 // Process termination
 ProcessTermination(pMatrix, pProcRows);

 MPI_Finalize();
 return 0;
}

// Function for allocating the memory and setting the initial values
void ProcessInitialization(int *&pMatrix, int *&pProcRows, int& Size,
 int& RowNum) {
 setvbuf(stdout, 0, _IONBF, 0);

 if(ProcRank == 0) {
 do {
 printf("Enter the number of vertices: ");
 scanf("%d", &Size);

 if(Size < ProcNum)
 printf("The number of vertices should be greater then"
 "the number of processes\n");
 } while(Size < ProcNum);

 printf("Using the graph with %d vertices\n", Size);
 }

 // Broadcast the number of vertices
 MPI_Bcast(&Size, 1, MPI_INT, 0, MPI_COMM_WORLD);

 // Number of rows for each process
 int RestRows = Size;
 for(int i = 0; i < ProcRank; i++)
 RestRows = RestRows - RestRows / (ProcNum - i);
 RowNum = RestRows / (ProcNum - ProcRank);

 // Allocate memory for the current process rows
 pProcRows = new int[Size * RowNum];

 if(ProcRank == 0) {
 // Allocate memory for the adjacency matrix
 pMatrix = new int[Size * Size];

 // Data initalization
 DummyDataInitialization(pMatrix, Size);
 //RandomDataInitialization(pMatrix, Size);
 }
}

// Function for computational process termination
void ProcessTermination(int *pMatrix, int *pProcRows) {
 if(ProcRank == 0)
 delete []pMatrix;
 delete []pProcRows;
}

// Function for simple setting the initial data
void DummyDataInitialization(int *pMatrix, int Size) {

31

 for(int i = 0; i < Size; i++)
 for(int j = i; j < Size; j++) {
 if(i == j) pMatrix[i * Size + j] = 0;
 else
 if(i == 0) pMatrix[i * Size + j] = j;
 else pMatrix[i * Size + j] = -1;
 pMatrix[j * Size + i] = pMatrix[i * Size + j];
 }
}

// Function for setting the data by the random generator
void RandomDataInitialization(int *pMatrix, int Size) {
 srand((unsigned)time(0));

 for(int i = 0; i < Size; i++)
 for(int j = 0; j < Size; j++)
 if(i != j) {
 if((rand() % 100) < InfinitiesPercent)
 pMatrix[i * Size + j] = -1;
 else
 pMatrix[i * Size + j] = rand() + 1;
 }
 else
 pMatrix[i * Size + j] = 0;
}

// Function for the data distribution among the processes
void DataDistribution(int *pMatrix, int *pProcRows, int Size, int RowNum) {
 int *pSendNum; // Number of elements sent to the process
 int *pSendInd; // Index of the first data element sent to the process
 int RestRows = Size; // Number of rows, that havenТt been distributed yet

 // Allocate memory for temporary objects
 pSendInd = new int[ProcNum];
 pSendNum = new int[ProcNum];

 // Define the disposition of the matrix rows for current process
 RowNum = Size / ProcNum;
 pSendNum[0] = RowNum * Size;
 pSendInd[0] = 0;
 for (int i = 1; i < ProcNum; i++) {
 RestRows -= RowNum;
 RowNum = RestRows / (ProcNum - i);
 pSendNum[i] = RowNum * Size;
 pSendInd[i] = pSendInd[i - 1] + pSendNum[i - 1];
 }

 // Scatter the rows
 MPI_Scatterv(pMatrix, pSendNum, pSendInd, MPI_INT,
 pProcRows, pSendNum[ProcRank], MPI_INT, 0, MPI_COMM_WORLD);

 // Free allocated memory
 delete []pSendNum;
 delete []pSendInd;
}

// Function for process result collection
void ResultCollection(int *pMatrix, int *pProcRows, int Size, int RowNum) {
 int *pReceiveNum; // Number of elements, that current process sends
 int *pReceiveInd; // Offset for storing the data from current process
 int RestRows = Size; // Number of rows, that haven't been gathered yet

 // Allocate memory for temporary objects

32

 pReceiveNum = new int[ProcNum];
 pReceiveInd = new int[ProcNum];

 // Determine the disposition of the result data block of current process
 RowNum = Size / ProcNum;
 pReceiveInd[0] = 0;
 pReceiveNum[0] = RowNum * Size;

 for(int i = 1; i < ProcNum; i++) {
 RestRows -= RowNum;
 RowNum = RestRows / (ProcNum - i);
 pReceiveNum[i] = RowNum * Size;
 pReceiveInd[i] = pReceiveInd[i - 1] + pReceiveNum[i - 1];
 }

 // Gather the whole matrix on the process 0
 MPI_Gatherv(pProcRows, pReceiveNum[ProcRank], MPI_INT,
 pMatrix, pReceiveNum, pReceiveInd, MPI_INT, 0, MPI_COMM_WORLD);

 // Free allocated memory
 delete []pReceiveNum;
 delete []pReceiveInd;
}

// Function for the parallel Floyd algorithm
void ParallelFloyd(int *pProcRows, int Size, int RowNum) {
 int *pRow = new int[Size];
 int t1, t2;
 for(int k = 0; k < Size; k++) {
 // Distribute row among all processes
 RowDistribution(pProcRows, Size, RowNum, k, pRow);

 // Update adjacency matrix elements
 for(int i = 0; i < RowNum; i++)
 for(int j = 0; j < Size; j++)
 if((pProcRows[i * Size + k] != -1) &&
 (pRow [j] != -1)) {
 t1 = pProcRows[i * Size + j];
 t2 = pProcRows[i * Size + k] + pRow[j];

 pProcRows[i * Size + j] = Min(t1, t2);
 }
 }

 delete []pRow;
}

// Function for row broadcasting among all processes
void RowDistribution(int *pProcRows, int Size, int RowNum, int k, int
*pRow) {
 int ProcRowRank; // Process rank with the row k
 int ProcRowNum; // Process row number

 // Finding the process rank with the row k
 int RestRows = Size;
 int Ind = 0;
 int Num = Size / ProcNum;

 for(ProcRowRank = 1; ProcRowRank < ProcNum + 1; ProcRowRank ++) {
 if(k < Ind + Num) break;
 RestRows -= Num;
 Ind += Num;
 Num = RestRows / (ProcNum - ProcRowRank);

33

 }
 ProcRowRank = ProcRowRank - 1;
 ProcRowNum = k - Ind;

 if(ProcRowRank == ProcRank)
 // Copy the row to pRow array
 copy(&pProcRows[ProcRowNum*Size],&pProcRows[(ProcRowNum+1)*Size],pRow);

 // Broadcast row to all processes
 MPI_Bcast(pRow, Size, MPI_INT, ProcRowRank, MPI_COMM_WORLD);
}

// Function for formatted output of all stripes
void ParallelPrintMatrix(int *pProcRows, int Size, int RowNum) {
 for(int i = 0; i < ProcNum; i++) {
 MPI_Barrier(MPI_COMM_WORLD);
 if (ProcRank == i) {
 printf("ProcRank = %d\n", ProcRank);
 fflush(stdout);
 printf("Proc rows:\n");
 fflush(stdout);
 PrintMatrix(pProcRows, RowNum, Size);
 fflush(stdout);
 }
 MPI_Barrier(MPI_COMM_WORLD);
 }
}

// Function for testing the data distribution
void TestDistribution(int *pMatrix, int *pProcRows, int Size, int RowNum) {
 MPI_Barrier(MPI_COMM_WORLD);
 if (ProcRank == 0) {
 printf("Initial adjacency matrix:\n");
 PrintMatrix(pMatrix, Size, Size);
 }

 MPI_Barrier(MPI_COMM_WORLD);

 ParallelPrintMatrix(pProcRows, Size, RowNum);
}

// Testing the result of parallel Floyd algorithm
void TestResult(int *pMatrix, int *pSerialMatrix, int Size) {
 MPI_Barrier(MPI_COMM_WORLD);

 if(ProcRank == 0) {
 SerialFloyd(pSerialMatrix, Size);
 if(!CompareMatrices(pMatrix, pSerialMatrix, Size)) {
 printf("Results of serial and parallel algorithms are "
 "NOT identical. Check your code\n");
 }
 else {
 printf("Results of serial and parallel algorithms are "
 "identical\n");
 }
 }
}

 File ParallelFloydTest.cpp
#include <cstdio>
#include <algorithm>
using namespace std;

34

#include "ParallelFloyd.h"
#include "ParallelFloydTest.h"

// Function for copying the matrix
void CopyMatrix(int *pMatrix, int Size, int *pMatrixCopy) {
 copy(pMatrix, pMatrix + Size * Size, pMatrixCopy);
}

// Function for comparing the matrices
bool CompareMatrices(int *pMatrix1, int *pMatrix2, int Size) {
 return equal(pMatrix1, pMatrix1 + Size * Size, pMatrix2);
}

// Function for the serial Floyd algorithm
void SerialFloyd(int *pMatrix, int Size) {
 int t1, t2;
 for(int k = 0; k < Size; k++)
 for(int i = 0; i < Size; i++)
 for(int j = 0; j < Size; j++)
 if((pMatrix[i * Size + k] != -1) &&
 (pMatrix[k * Size + j] != -1)) {
 t1 = pMatrix[i * Size + j];
 t2 = pMatrix[i * Size + k] + pMatrix[k * Size + j];
 pMatrix[i * Size + j] = Min(t1, t2);
 }
}

// Function for formatted matrix output
void PrintMatrix(int *pMatrix, int RowCount, int ColCount) {
 for(int i = 0; i < RowCount; i++) {
 for(int j = 0; j < ColCount; j++) {
 printf("%7d", pMatrix[i * ColCount + j]);
 fflush(stdout);
 }
 printf("\n");
 fflush(stdout);
 }
}

	Learning Lab 5: Parallel Algorithms of Graph Processing
	Lab Objective
	Exercise 1 – State the Shortest Path Problem
	Exercise 2 – Code the Serial Floyd Program
	Task 1 – Open the project SerialFloyd
	Task 2 – Input the Number of Vertices
	Task 3 –Terminatee the Program Execution
	Task 4 – Implement the Floyd Algorithm
	Task 5 – Carry out the Computational Experiments

	Exercise 3 –Develop the Parallel Floyd Algorithm
	Subtask Definition
	Choosing the Information Dependencies
	Scaling and Distributing the Subtasks among Processors

	Exercise 4 – Code the Parallel Floyd Program
	Task 1 – Open the Project ParallelFloyd
	Task 2 –Initialize and Terminate the Parallel Program
	Task 3 – Input the Initial Data
	Task 4 –Terminate the Calculations
	Task 5 – Distribute the Data among the Processes
	Task 6 – Implement the Parallel Floyd Algorithm
	Task 7 – Implement the Floyd Algorithm Iterations
	Task 8 – Collect the Result Matrix
	Task 9 – Test the Parallel Program Correctness
	Task 10 – Implement the Floyd Algorithm for Any Given Graph
	Task 11 – Carry out the Computational Experiments

	Discussions
	Exercises
	Appendix 1. The Program Code of the Serial Floyd Algorithm
	File SerialFloyd.cpp
	File SerialFloydTest.cpp

	Appendix 2. The Program Code of the Parallel Floyd Algorithm
	File ParallelFloyd.cpp
	File ParallelFloydTest.cpp

